A100 Apprentice Success Skills
18 Hours 1 Credit
Assists students in having a successful transition to the academic and craft demands of an apprenticeship. Academic related topics include: Skip Downing’s student success strategies, academic policies, plagiarism prevention, algebra review, goal setting, study skills, and test-taking strategies. Craft related topics include: career and academic planning, safety orientation (personal protection equipment, confined spaces, and plant security). Topics are reinforced through real-life examples, discussion, and team-based approaches. Provides opportunity for apprentices to meet with student services, athletics, craft, and academic staff. Includes the math placement test. Required of all apprentices. Pass or fail.

B112 Problem Solving
42.75 Hours 4 Credits
Includes methods and tools for problem solving and decision making in industrial environments. Topics include: team concepts, systems analysis, identifying and documenting objectives, functional flow diagrams, timeline analysis, and statistical process modeling. Topics are reinforced through a team-based term project focusing on process improvement. Special emphasis is given to leadership principles and behaviors.

B122 Business Operations and Leadership
42.75 Hours 3 Credits
Introduces business and leadership concepts with specific application to the shipbuilding industry and leadership principles of Newport News Shipbuilding. Includes topics such as, product mix, business strategies, contracts, process improvement, quality programs, shipbuilding economics, teams and teamwork, communications, the principles of leadership and corporate values.

C111 Technical Communications I
52.25 Hours 3 Credits
Prepares apprentices to meet written and oral demands of a business environment. Includes instruction in writing and speaking skills, with application to business communications such as, written reports and procedures, memorandums, and oral presentations. Microsoft Office applications are utilized for writing, editing, and preparation of presentation materials.

C211 Introduction to Computers
42.75 Hours 3 Credits
Provides students with the skills and knowledge related to computer use at Newport News Shipbuilding, which will support computer requirements in subsequent academic courses and prepare apprentices for tasks requiring computer usage after their apprenticeship. Includes an overview of hardware, software, operating systems, workstations, microcomputer processes, and NNS policies. Emphasizes the Microsoft Office Suite including Word, Excel, Access, PowerPoint, Outlook, Explorer, and Windows.

D111 Drafting
57 Hours 3 Credits
Exposes apprentices to the fundamentals and principles of engineering drafting as it relates to the shipbuilding industry. Skills taught include freehand sketching, and both 2D and 3D AutoCAD applications for orthographic projection, auxiliary and sectional views, isometric drawings, and solid modeling.

M010 Math Review
31.5 Hours, 0 Credits
A non-credit course that focuses on the math skills an apprentice will need to be successful in the WCSC. Topics include order of operations, laws of exponents, linear equations, and formulas, problem solving with unit conversions, polynomial operations including factoring, and reducing algebraic fractions by factoring. Apprentice School Developmental long-term math review course designed to prepare individual apprentices that require extra assistance for M111, Technical Mathematics I, in the World Class Shipbuilder Curriculum. Review of basic algebra skills to include signed numbers, order of operations, laws of exponents, and polynomial operations.
M111 Technical Math I
57 Hours 3 Credits
Supports the craft training programs. It provides apprentices with the basic skills necessary to be successful in the mathematics, science, and engineering courses of their academic curriculum and prepares apprentices for future educational opportunities. It includes linear equations, factoring, algebraic fractions, exponents, roots, radicals, quadratic equations, graphing, systems of equations, and application-related principles/problems.

M112 Technical Math II
57 Hours 3 Credits
Uses algebraic principles to solve shipbuilding applications of plane and solid geometry, right and oblique triangle trigonometry, and vector principles. Includes principles/problems from plane and solid geometry and trigonometry, Pythagorean Theorem, surface area and volume of various figures, trigonometric functions and solution of right triangles, oblique triangles using the Laws of Sines and Cosines, and vectors and equilibrium solutions of concurrent force systems.

M121 Mechanics
52.25 Hours 3 Credits
Mechanics builds the bridge between the analytical world of mathematics, science, and engineering and the practical world of shipbuilding design and construction. Includes application of free-body-diagrams (FBDs) to various force systems and the subsequent application of the equations of static equilibrium in finding the external support reactions of the FBDs. The reactions are used in strength of materials problems to determine the required dimensions of the various pieces of material.

N111 Ship Construction I
38 Hours 2 Credits
Introduces shipbuilding by providing a common vocabulary of shipbuilding terms, the basic elements of a ship, the concept of a process, the shipbuilding trades, and the company’s quality program. Includes specific topics such as: the definition of a ship, ship’s mission requirements, ship’s hull design, drawings, lines and offsets, ship components of hull structure, the modern shipbuilding process and facilities, the fundamental force support systems, and the concepts of quality and process excellence used at NNS.

N222 Ship Construction II
38 Hours 3 Credits
Provides apprentices with an understanding of the typical propulsion plants and their associated components used in today’s Navy. Includes the operation and major components of a ship’s basic propulsion drive train including: resistances, a conventional steam cycle propulsion system, a pressurized water reactor propulsion system, a gas turbine propulsion system and a basic internal combustion propulsion system. Included are the scientific laws and principles involved.

P221 Physical Science I
57 Hours 3 Credits
Introductory physics course that integrates scientific theories with waterfront experiences. Topics include forces, velocity, acceleration, energy, work, power, and momentum (both translational and rotational modes), freely falling bodies, projectile motion, friction, centrifugal and centripetal forces.

P222 Physical Science II
57 Hours 4 Credits
Physical Science II is a continuation of physics introduced in Physical Science I. Topics include simple machines, the principles of fluids at rest and in motion. Emphasis is placed upon density, specific gravity, pressure, Pascal’s law, Archimedes’ principle, and Bernoulli’s principle. The relationships between temperature change and the effect on the physical dimensions on material and the relationship among the various temperature scales is studied. Topics also include the quantity of heat, calorimetry, and latent heat.

S101 SafeStart
30 Hours 2 Credits
Employs the broad category of safety awareness and personal safety skills development. It focuses on the human factors that are involved in the majority of incidents and injuries. States like rushing, frustration, fatigue and complacency lead to unintentional, risk-increasing errors like eyes and mind not on task, being in or moving into the line-of-fire or losing your balance, traction or grip.
COATINGS SPECIALIST

X331 Paint and Surface Preparation
40 Hours 2 Credits
Provides the apprentice with an understanding of safety, surface preparation, and typical paint installation techniques for new ship construction and overhaul. Describes the function and use of hand and mechanically operated trade tools used for surface coating calculation, preparation, application, and final surface presentation. Creating and maintaining safe work habits and conditions are stressed throughout the course.

X332 Blueprint Reading for Painters
10 Hours 1 Credit
Instructs the apprentice in reading, interpreting, and applying painting information from blueprints and other construction documents to new ship construction and overhaul. Includes the principles necessary to interpret and apply information from various types of blueprints, schedules, data sheets, charts, procedures, and other job related documents. Includes compartment and access plans, deck and wall coverings, painting schedules, inspection procedures, other trade documents and forms.

DIMENSIONAL CONTROL TECHNICIAN

O681 Industrial Measurement–Instrumentation
80 Hours 3 Credits
This course covers tasks associated with performing on-site visual inspections of components to determine measurement methodology, planning and coordinating phases of the measurement survey process and analyzing/interpreting data. This is an introduction and orientation to industrial measurements in a large manufacturing and industrial setting. This course will take a hands-on approach in which majority of the time will be spent using Metrology equipment and applicable software including Spatial Analyzer, V-Stars, and Excel. Specific Metrology equipment includes care and handling, compensation, and utilization of the Total Station, Laser Tracker, Photogrammetry, Coordinate Measurement Machines and Precision Measurement Instruments. An overview of the department, laser safety, and ergonomics will be covered. The departmental and industry best practices and procedures for surveying, analyzing, reporting, and checking processes will be discussed throughout the course.

O682 Industrial Measurement–Processing
80 Hours 3 Credits
This course provides an overview of the trades that O68 supports. This will include an overview of the trade and how they will use the information provided by O68. Identifying the build sequence and the requirements that must be achieved including tolerances and job specific activities will be covered for the following trades: X11, X42, X43, M42, M53, and A572. For each trade module, a lecture will be held to identify specifications that need to be met and some common problems identified. Each module will have files within the Spatial Analyzer software to process using the transformation techniques performed for majority of the job classifications. Once each job is processed, a report will be generated using a report template.
The Apprentice School Course Catalog
For course curriculum, visit https://www.as.edu/programs/index.html

ELECTRICIAN

X311 Applied Theory I: DC Concepts
90 Hours 5 Credits
Introduction to DC theory is a prerequisite for subsequent electrical theory classes as well as a provider of essential information on electrical safety. This course introduces the effects of DC voltage, current and power in resistive circuits (including series, parallel, and series-parallel networks with emphasis on Kirchhoff’s voltage and current laws), and voltage divider and current divider rules. Circuit analysis includes source conversion, mesh analysis, superposition, and Thevenin’s and Norton’s theorems. Practical lab exercises incorporate standard test equipment, classroom theory, troubleshooting skills, and electrical safety.

X312 Applied Theory II: AC Concepts
90 Hours 5 Credits
This course completes DC concepts by presenting transient effects of capacitors and inductors and discussing magnetic circuits. AC theory concepts and applications are introduced using general sinusoidal format for AC voltage, current, power and frequency as it applies to resistive and reactive series, parallel and series-parallel networks. Circuit analysis includes mesh analysis, superposition, and Thevenin’s and Norton’s theorems. Practical lab exercises incorporate standard test equipment, classroom theory, troubleshooting skills, and electrical safety. Prerequisite: X311

X313 Applied Theory III: Polyphase Systems and Controls
115 Hours 6 Credits
This course continues AC theory concepts including resonance, filters, AC power, polyphase systems and transformers. Information on motor controls begins with the principles and applications of DC and AC generators and motors and continues with examples of DC and AC electromechanical controls including schematic symbols, wiring and schematic diagrams, relays and contactors, motor overload devices, time delay circuitry, reduced voltage starting methods, and deceleration methods. The student learns the most effective methods and strategies used to troubleshoot complex electromechanical control systems through hands on laboratory exercises emphasizing electrical safety, electromechanical circuit design and troubleshooting. Prerequisites: X311 and X312

X316 Programmable Logic Controllers
66 Hours 2 Credits
The course begins with an introduction to digital electronics including numbering systems, gate logic and combinational logic, and continues with applications of digital electronics through encoders, decoders, flip-flops and counters. The course continues with programming, hook-up and troubleshooting of programmable logic controllers (PLCs). Industry standard PLCs and programming software are used for specific training on ladder logic diagrams, input/output instructions, internal relays, timers, counters, compare and math functions, control instructions, sequencers, retrofitting, and program design. Prerequisite: X313

HEATING & AIR CONDITIONING WORKER

All Electrical Theory (See ELECTRICIAN)

043H Air Conditioning and Refrigeration I
90 Hours 4 Credits
Studies refrigeration theory, characteristics of refrigerants, temperature, and pressure, tools and equipment, soldering, brazing, refrigeration systems, system components, compressors, evaporators, and metering devices. Presents charging and evaluation of systems and leak detection. Explores servicing the basic system. Explains use and care of oils and additives and troubleshooting of small commercial systems.

01Nov2019
HEAVY METAL FABRICATOR

*X111 Hull Construction Theory I

X151 Fundamentals of Fabrication
16 Hours 1 credit
Develops an understanding of efficient heavy metal fabrication machinery, processes, and procedure.

INSULATOR

X333 Theory of Insulation
40 Hours 2 Credits
Provides apprentice with an understanding of safety, application and installation of insulation materials for new ship construction and overhaul. Describes the function and use of hand and mechanically operated trade tools used on various insulation compositions, application and installation, and safe work practices while working with hazardous materials.

X334 Blueprint Reading for Insulators
11 Hours 1 credit
Instructs the apprentice in reading, interpreting, and applying insulation information from blueprints and other construction documents to new ship construction and overhaul. Includes the principles necessary to interpret and apply information from various types of blueprints, schedules, data sheets, charts, procedures, and other job related documents.

MACHINIST

M531 Machinist Shop Theory
30 Hours 2 Credits
This course is designed to cover basic machine shop safety, hand tools, measuring tools (including precision measuring tools), metric measurement, tapers and angles, and basic machine theory. Included are tools and attachments for machines such as the drill press, shaper, slotter, planer, milling machine, and engine lathe. Identification of machines and their principal parts and machine operation are also covered. Apprentices will be introduced to drawings and cover basic shop work practices. Proficiency evaluations include tests.

M533 Computer Numerical Control Programming/Lab
80 Hours 3 Credits
Introduces the concepts of Computer Numerical Controlled (CNC) programming. Apprentices will write detailed programs using “G” code and “M” code as they learn various machining operations. These operations include using fixed cycles and subroutines, linear and circular interpolation, tool radius compensation as well as modern touch-off approaches using electronic probing. This course includes an operator section to teach each student responsibilities of the programmer and the specifics within the machine. This class is the second trade related theory course that all machine shop apprentices are required to complete. This course provides knowledge of CNC programming which would allow the apprentice to read and analyze a numerically controlled program in order to run their first CNC machine successfully. Prerequisite: M531
MILLWRIGHT

*M531 Machinist Shop Theory (See MACHINIST)

0431 Introduction to Hydraulics
30 Hours 3 Credits
Provides an understanding of hydraulic systems, associated components, and their schematics found in the shipyard. Covers introductory hydraulics including air and fluid power principles, hydraulic power system components, different types of hydraulic fluids, hydraulic strainers and filters, hydraulic reservoirs and accumulators, hydraulic piping, tubing and fittings, hydraulic directional control valves, hydraulic pressure control valves, hydraulic cylinders, hydraulic motors, and rotary activators.

MODELING AND SIMULATION

EGR 218 Introduction to Modeling and Simulation
45 Hours 3 Credits
Introduces basic concepts in modeling, simulation, and visualization. Includes applications in various phases of product creation and development; use of software and hardware interfaces to improve use and understanding of simulations; and current topics and future directions in modeling, simulation, and visualization.

EGR 230 Discrete Event Simulation
60 Hours 4 Credits
Introduces fundamentals of modeling and simulating discrete-state, event-driven systems. Includes basic simulation concepts and terms, queuing theory models for discrete event systems, structure of discrete event simulations, problem formulation and specification, input data representation, output data analysis, verification and validation, and the design of simulation experiments.

MOLDER

A5721 Foundry Processes
40 Hours 3 Credits
The scope of this course covers the fundamental processes of metal casting in the Newport News Shipbuilding Foundry. It includes a look at the history of the Foundry and begins with the design parameters originating in the Pattern Shop and includes all processes of the Foundry through the Inspection Process. The goal of this course is to equip Foundry Apprentices with knowledge foundational to making intuitive decisions on the job. Proficiency is tested at all levels to validate learning using written tests that include applications for problem solving.

A5722 Blueprint Reading for Molders
15 Hours 1 Credits
This course is designed to encourage best practices for interpreting, visualizing and communicating industrial drawing contents. The sessions include learning the skills required to recognize the components of a drawing and their contents and be able to relate the parts to each other. Use of appropriate measuring tools, identifying and interpreting lines and symbols, recognizing and interpreting various drawing views, locating information blocks, introduction of necessary vocabulary and abbreviations, and fraction and decimal math computations are included. A comparison of a NNS drawing with a commercial drawing is also investigated. Proficiency evaluations include tests, sample drawings and models.
NON-DESTRUCTIVE TESTER

O381 Non-Destructive Testing (NDT) Theory
13 Hours 0 Credit
Includes the fundamental knowledge of NDT methods used to examine welds. Provides training in surface testing methods with magnetic particle, liquid penetrant, and eddy current testing, and volumetric/subsurface testing with radiographic and ultrasonic methods. Note: for qualification purposes only.

O382 Magnetic Particle Testing
40 Hours 2 Credits
Develops a general understanding of safe and efficient Magnetic Particle Testing methods. Including the terms, definitions, procedures and requirements involved in the Magnetic Particle Testing process.

O383 Electromagnetic Testing
40 Hours 2 Credits
Develops a general understanding of safe and efficient Electromagnetic testing methods. Including the term, definitions, procedures and requirements involved in the Electromagnetic Testing process.

O384 Liquid Penetrant Testing
40 Hours 2 Credits
Develops a general understanding of safe and efficient Liquid Penetrant Testing methods. Including the terms, definitions, procedures and requirements involved in the Liquid Penetrant Testing process.

O385 Radiography Testing
40 Hours 2 Credits
Develops a general understanding of safe and efficient Radiography Testing methods. Including the terms, definitions, procedures and requirements involved in the Radiography testing process.

O386 Ultrasonic Testing
40 Hours 2 Credits
Develops a general understanding of safe and efficient Ultrasonic Testing methods. Including the terms, definitions, procedures and requirements involved in the Ultrasonic Testing process.

OUTSIDE MACHINIST

X431 Machinery Installation Theory
40 Hours 3 Credits
Includes an introduction to measurement tools, drawings and blueprints, flanges, gaskets, fastener/material control, and identification and information on shop machines and portable machines. Also covered in this course are the care and handling of machines and the safety requirements for working with rotating machinery. Finally, students taking the class will get a short overview of the material that will be covered in the X433 Ship Systems course.

X432 Introduction to Hydraulics
30 Hours 2 Credits
With specific applications to shipboard environments, covers introductory hydraulics which includes air and fluid power principles, hydraulic power system components, different types of hydraulic fluids, hydraulic strainers and filters, hydraulic reservoirs and accumulators, hydraulic piping, tubing and fittings, hydraulic directional control valves, hydraulic pressure control valves, hydraulic cylinders, hydraulic motors, rotary activators, and system troubleshooting.
X433 Ship Systems
40 Hours 3 Credits
This course is intended to provide each student in-depth knowledge of various major shipboard systems. The following topics will be covered in the course: Hydraulic systems, Aircraft Carrier (Navigation/Surveillance/Weapons systems); Submarine (Surveillance and Weapons systems); Main Propulsion systems; Auxiliary systems; Aircraft Carrier (Deck Machinery); and, Aircraft Launch and Recovery systems (ALRE).

M711 Patternmaker’s Theory
60 Hours 4 Credits
This is a blended course in which the students gain knowledge and understanding of all the types of work a patternmaker is required to know how to do, including patternmaking for the Foundry and various kinds of woodworking. Practical applications are made including the actual operation of Pattern Shop machines and tools as well as the construction of 6 different patterns from a single layout.

AS721 Foundry Processes
40 Hours 3 Credits
The scope of this course covers the fundamental processes of metal casting in the Newport News Shipbuilding Foundry. It includes a look at the history of the Foundry and begins with the design parameters originating in the Pattern Shop and includes all processes of the Foundry through the Inspection Process. The goal of this course is to equip Foundry Apprentices with knowledge foundational to making intuitive decisions on the job. Proficiency is tested at all levels to validate learning using written tests that include applications for problem solving.

PIPEFITTER

X421 Introduction to Pipefitting
24 Hours 1 Credit
Provides the apprentice with an understanding of basic hand tools, material identification (pipe / fittings / valves), trade math, and rule reading / measurement.

X422 Blueprint Reading Fundamentals and Procedures
24 Hours 1 Credit
Provides the apprentice with the basic principles of blueprint reading and procedures used in pipefitting. Areas covered include blueprint terminology and navigation, drawing scales, material lists, welding, brazing, and NDT procedures.

X423 Sketching and Bending Fundamentals
60 Hours 3 Credits
Provides the apprentice with the principles of sketching and bending for various piping configurations. Areas covered include determining sizes of bending heads, true lengths between bends, calculating roll and bend angles, bending flat and rolling offsets, and determining bent pipe characteristics mathematically.

X424 Piping Systems
12 Hours 1 Credit
Provides the apprentice with principles of shipboard piping systems and their operation. Piping systems discussed include propulsion, seawater, hydraulics, plumbing drains, potable water, lube oil, JP-5, and various nuclear piping components and systems in shipbuilding.
The Apprentice School Course Catalog

For course curriculum, visit
https://www.as.edu/programs/index.html

RIGGER

X361 Stagebuilding, Blocking, and Shoring Theory
30 Hours 2 Credits
Provides the apprentice with a basic understanding of rigging safety, stagebuilding, blocking, and shoring for new ship construction and overhaul.

X362 Lifting and Handling Equipment Theory
30 Hours 2 Credits
Provides the apprentice with a basic understanding of rigging safety, lifting/handling equipment and the development of lift plans used in new ship construction and overhaul.

X363 Mooring and Ventilation Theory
31 Hours 2 Credits
Provides the apprentice with a basic understanding of safe handling of ship lines during the mooring process of ships and submarines as well as an overview of the procedures and calculations needed to design and install proper ventilation for ship construction and overhaul.

SHEET METAL WORKER

X321 Blueprint and Group Sheet Reading
15 Hours 1 Credit
Provides the apprentice with a thorough knowledge of basic print reading and grouping that is essential to the sheet metal trade. This course covers fundamental drawing information, including isometric and orthographic objects, weld symbols, ship terms and abbreviations, scaling, types and parts of drawings, and work packages. Also includes interpreting group sheets and computer bills of material.

X322 Materials, Machine Processes, Drilling and Tapping
20 Hours 1 Credit
Exposes the apprentice to various sheet metal materials as well as the machinery and processes involved in the fabrication and installation of sheet metal products. This course includes material identification and characteristics along with types of fasteners and pipe sizes. In addition, the course covers basic sheet metal tools and machines, machine processes, shielded metal arc welding, drilling, and tapping operations, with emphasis placed on safe work practices.

X323 Sheet Metal Layout
18 hours 1 Credit
Introduces the apprentice to the concepts of planning, designing, and shaping complex sheet metal components using applied math and geometry. This course covers sheet metal and heavy metal layout for breaking, forming, rolling, and notching to form material into three dimensional objects and components. The course includes square breaks, radius breaks, and rolling by hydraulic presses, hand brakes, and hand and power rollers, with an emphasis on safe, efficient work practices.

X324 Advanced Print Reading
34 Hours 2 Credits
Provides a wide-ranging exposure to the sheet metal blueprints and drawings that relate to specific areas of shipbuilding, including carriers, submarines, and shops. This course provides comprehensive instruction on a variety of Sheet Metal drawings including the information and makeup of 24 different arrangement, detail, and list drawings. Additional topics include the major categories of work performed in the Sheet Metal Department.
The Apprentice School Course Catalog
For course curriculum, visit
https://www.as.edu/programs/index.html

SHIPFITTER

X111 Hull Construction I
18 Hours 1 Credit
Develops a general understanding of safe and efficient shipbuilding manufacturing practices and the tools involved in these practices. Includes hull trade apprentice shipyard safety responsibilities, tools of the trade, ship nomenclature, hull construction, basic ship lines, structural shapes, fractions and plate weight conversions. Also includes, interpretation of drawings, work packages, material layoff, joint fit-up, workmanship, and weld symbols.

X113 Hull Construction II CVN Drawings and Work Packages
8 Hours 1 Credit
Develops an understanding of efficient shipbuilding manufacturing practices through detailed drawing and work package interpretation. Includes analysis of carrier construction documents.

X114 Hull Construction II VCS Drawings and Work Packages
8 Hours 1 Credit
Develops an understanding of efficient shipbuilding manufacturing practices through detailed drawing and work package interpretation. Includes analysis of submarine construction documents.

X115 Hull Construction III
24 Hours 1 Credit
Develops a more advanced understanding of safe and efficient shipbuilding and manufacturing practices. It builds on information, skills and experiences gained in X111 and rotation experiences. It offers more specific application of tool safety, math calculations, material layoff, and joint fit-up and workmanship.

WELDER

X111 Hull Construction Theory I (See HEAVY METAL FABRICATOR)

X183 Welding Fundamentals: SMAW and GMAW
18 Hours 1 Credit
Develops a general understanding of safe and efficient welding practices and the tools involved in these practices. Includes shipyard safety, fundamentals of SMAW electrical circuits, terms and definitions, weld symbols, the structural joint numbering system, and proper welding sequence. Consists of an examination of GMAW components and electrical characteristics of the system.

X185 Introduction to Non Destructive Testing
8 Hours 1 Credit
Develops an academic and hands-on understanding of non-destructive weld testing techniques. Includes the most common types of weld discontinuities, the most commonly used NDT methods, and the advantages and limitations of each. The course also includes the interrelationships between welding processes, discontinuities, and inspection methods.

WELDING EQUIPMENT REPAIRER

All Electrical Theory Courses (SEE ELECTRICIAN)
Advanced Programs

A211 (ACC 211) Principles of Accounting I
5 Hours 3 Credits
Prerequisite(s): ENF 1 or ENF 2 and (competency in Math Essentials units 1-5 or MTH 120) as demonstrated through the placement and diagnostics tests or equivalent. Introduces accounting principles with respect to financial reporting. Demonstrates how decision makers use accounting information for reporting purposes. Focuses on the preparation of accounting information and its use in the operation of organizations, as well as methods of analysis and interpretation of accounting information. A laboratory co-requisite (ACC 213) may be required as identified by the college. Lecture 3 hours per week.

A212 (ACC 212) Principles of Accounting II
45 Hours 3 Credits
Prerequisite(s): ACC 211 with a grade of "C" or better. Introduces accounting principles with respect to cost and managerial accounting. Focuses on the application of accounting information with respect to product costing, as well as its use within the organization to provide direction and to judge performance. A laboratory co-requisite (ACC 214) may be required as identified by the college. Lecture 3 hours per week.

B117 (BUS 117) High Performance Work Teams (Leadership Development)
45 Hours 3 Credits
Covers interpersonal relations in hierarchical structures. Examines the dynamics of teamwork, motivation, handling change and conflict and how to achieve positive results through others. Lecture 3 hours per week.

B201B (BUS 201) Organizational Behavior
45 Hours 3 Credits
Presents a behaviorally oriented course combining the functions of management with the psychology of leading and managing people. Focuses on the effective use of human resources through understanding human motivation and behavior patterns, conflict management and resolution, group functioning and process, the psychology of decision making, and the importance of recognizing and managing change. Lecture: 3 hours per week

B209 (BUS 209) Total Quality Management (Continuous Quality Improvement)
45 Hours 3 Credits
Presents the different philosophies in Quality Control. Introduces students to Process Improvement, Team Development, Consensus Building, and Problem-Solving strategies. Identifies methods for Process Improvement in manufacturing and service organizations which includes Statistical Process Control when used in the quality control function of business and industry. Lecture 3 hours per week.

B216 (BUS 216) Probability and Statistics for Business and Economics
45 Hours 3 Credits
Introduces methods of probability assessment and statistical inference. Topics include descriptive statistics, normal and binomial distributions, decision making under uncertainty and under risk, decision analysis incorporating sample information, sampling distributions and central limit theorem, interval estimation, and hypothesis testing. Business and economic applications are emphasized. Computer software, as a tool for problem solving, is utilized where appropriate. Lecture 3 hours per week.

C201 (CSC 201) Computer Science
60 Hours 4 Credits
Introduces algorithm and problem solving methods. Emphasizes structured programming concepts, elementary data structures and the study and use of a high level programming language. Prerequisites: CSC 110 or equivalent and MTH 173 or equivalent. Lecture 4 hours per week.

C210 (CSC 210) Programming with C++
60 Hours 4 Credits
Includes language syntax, problem-solving techniques, top-down refinement, procedure definition, loop invariance, theory of numerical errors and debugging. Covers the syntax of the C++ language. Prerequisite: CSC 201 or EGR 125. Lecture 4 hours per week.

C221 (CHM 111) College Chemistry I
90 Hours 4 Credits
Explores the fundamental laws, theories, and mathematical concepts of chemistry. Designed primarily for science and engineering majors. Lecture 3 hours + lab 3 hours, total 6 hours per week.
C232 Technical Communications II
45 Hours 3 Credits
Prepares the apprentice to fulfill the varied writing demands of the business environment. Includes instruction in technical writing style and mechanics as it relates to business communications. Tone, style, content, and cross-cultural communication are covered as appropriate for audience and purpose through computer generated memoranda, procedures, summaries, and various technical reports. Computer generated graphics are designed to assist with understanding of technical information.

C243 Technical Communications III
45 Hours 3 Credits
Emphasizes concepts and principles of oral communications with emphasis on techniques that produce effective oral communications. Topics include listening, feedback, nonverbal communications, attitudes, and other interpersonal skills affecting speech communications. Emphasis is placed on application of oral communication skills for conveying technical information to varying levels of personnel in an industrial organization. Presentations are made at the individual, small, and large group levels.

C330 (CS 330) Object Oriented Programming and Design
45 Hours 3 Credits
Laboratory work required. The techniques and idioms of object-oriented programming in C++ and Java. Methods of object-oriented analysis and design with the Unified Modeling Language. Multi-thread programs, synchronization, and graphic user interfaces.

C381 (CS 381) Introduction to Discrete Structures
45 Hours 3 Credits
Laboratory work required. The techniques and idioms of object-oriented programming in C++ and Java. Methods of object-oriented analysis and design with the Unified Modeling Language. Multi-thread programs, synchronization, and graphic user interfaces.

D211 (CAD 211) Advanced Technical Drafting I
45 Hours 3 Credits
Teaches use of drafting equipment and applications, emphasizing knowledge and skill required for industrial drawing. Includes piping, gearing, geometric and positional tolerances and 2D/3D drawing layout. (Credit will not be awarded for both CAD 211 and DRF 211.) Prerequisites: CAD 151 or DRF 151. Lecture 2 hours + lab 3 hours, total 5 hours per week.

D241 (DRF 241) Parametric Solid Modeling I
75 Hours 4 Credits
Focuses on teaching students the design of parts by parametric solid modeling. Topics covered will include, but not limited to, sketch profiles; geometric and dimensional constraints; 3-D features; model generation by extrusion, revolution, and sweep; and the creation of 2-D drawing views that include sections, details and auxiliary. Lecture 3 hours + lab 2 hours, total 5 hours per week.

E110 (EGR 110) Engineering Graphics
60 Hours 3 Credits
Presents theories and principles of orthographic projections. Studies multi-view, pictorial drawings and sketches, geometric construction, sectioning, lettering, tolerancing, dimensioning and auxiliary projections. Studies the analysis and graphic presentation of space relationships of fundamental geometric elements: points, lines, planes and solids. Includes Instruction in Computer Aided Drafting. Lecture 2 hours + lab 2 hours = 4 hours per week.

E111 (ENG 111) College Composition I
45 Hours 3 Credits
Develops writing ability for study, work, and other areas of writing based on experience, observation, research, and reading of selected literature. Guides students in learning writing as a process: understanding audience and purpose, exploring ideas and information composing, revisions, and editing. Supports writing by integrating experiences in thinking, reading, listening, and speaking. Lecture 3 hours per week.

E112 (ENG 112) College Composition II
45 Hours 3 Credits
Continues to develop college writing with increased emphasis on critical essays, argumentation, and research through the examination of a range of texts about the human experience. Requires students to locate, evaluate, integrate, and document sources and effectively edit for style and usage. Lecture 3 hours per week.

E120 (EGR 120) Introduction to Engineering
30 Hours 2 Credits
Introduces the engineering profession, professional concepts, ethics, and responsibility. Reviews hand calculators, number systems, and unit conversions. Introduces the personal computer and operating systems. Includes engineering problem solving techniques using computer software. Lecture 1 hour + lab 2 hours – 3 hours per week.
E125 (EGR 125) Introduction to Engineering Methods
60 Hours 4 Credits
Applies problem-solving techniques to engineering problems utilizing computer programming and algorithms in a higher level computer language such as FORTRAN, PASCAL, or C++. Lecture 3 hours + lab 2 hours = 5 hours per week.

E126 (ENG 125) Introduction to Literature *
45 Hours 3 Credits
Introduces students to a range of literary genres that may include poetry, fiction, drama, creative nonfiction, and other cultural texts, as it continues to develop college writing. Prerequisite: ENG 111. Lecture 3 hours per week.

E140 (EGR 140) Engineering Mechanics – Statics
45 Hours 3 Credits
Introduces mechanics of vector forces and space, scalar mass and time, including S.I. and U.S. customary units. Teaches equilibrium, free-body diagrams, moments, couples, distributed forces, centroids, moments of inertia, analysis of two-force and multi-force members and friction and internal forces. Lecture 3 hours per week.

E148 (ETR 148) Amplifiers and Integrated Circuits
75 Hours 3 Credits
Studies devices and amplifiers with emphasis on analysis and design. May include summing and integrating amplifiers, choppers, modulators and other circuits. Lecture 3 hours + lab 3 hours, total 6 hours per week.

E150 (ELE 150) A.C. and D.C. Circuit Fundamentals
60 Hours, 4 credits
(3 credits) Prerequisite(s): ENF 1 or ENF 2 and competency in Math Essentials units 1-3 as demonstrated through the placement and diagnostic tests or equivalent. Provides an intensive study of the fundamentals of direct and alternating current, resistance, magnetism, inductance, and capacitance, with emphasis on practical applications. Focuses on electrical/machines applications. Lecture 2 hours + lab 2 hours, total 4 hours per week.

E201 (ECO 201) Principles of Economics I – Macroeconomics
45 Hours 3 Credits
Introduces macroeconomics including the study of Keynesian, classical, monetarist principles and theories, the study of national economic growth, inflation, recession, unemployment, financial markets, money and banking, the role of government spending and taxation, along with international trade and investments. Lecture 3 hours per week.

E202 (ECO 202) Principles of Economics II – Microeconomics
45 Hours 3 Credits
Introduces the basic concepts of microeconomics. Explores the free market concepts with coverage of economic models and graphs, scarcity and choices, supply and demand, elasticities, marginal benefits and costs, profits, and production and distribution. Lecture 3 hours per week.

E241 (ENG 241) Survey of American Literature
45 Hours 3 Credits
Examines American literary works from colonial times to the present, emphasizing the ideas and characteristics of our national literature. Involves critical reading and writing. Lecture 3 hours per week.

E245 (EGR 245) Engineering Mechanics – Dynamics
45 Hours 3 Credits
Presents approach to kinematics of particles in linear and curvilinear motion. Includes kinematics of rigid bodies in plane motion. Teaches Newton’s second law, work-energy and power, impulse and momentum, and problem solving using computers. Lecture 3 hours per week.

E246 (EGR 246) Mechanics of Materials
45 Hours 3 Credits
Teaches concepts of stress, strain, deformation, internal equilibrium, and basic properties of engineering materials. Analyzes axial loads, torsion, bending, shear and combined loading. Studies stress transformation and principle stresses, column analysis and energy principles. Lecture 3 hours per week.
E247 (EGR 247) Mechanics of Materials Laboratory
30 Hours 1 Credits
Examines mechanical behavior of bars, rods, shafts, tubes and beams subjected to various types of loading. Introduces experimental stress analysis techniques, such as the use of strain gages and data reduction. Laboratory 2 hours per week.

E250 (ETR 250) Solid State Devices
60 Hours 4 Credits
Teaches theory and application of amplifiers and oscillators. Includes amplifier circuit configurations, amplifier classes, operational amplifiers, power amplifiers, bandwidth distortion, and principles of feedback. Prerequisite: Knowledge of D.C./A.C. theory, and active devices and circuits.

E261 (EGR 261) Signals and Systems
45 Hours 3 Credits
Covers topics including Laplace transforms and Laplace transform analysis of circuits, time and frequency domain representation of linear systems, methods of linear systems analysis including convolution and Laplace transforms, frequency domain representation of signals including frequency response, filters, Fourier series, and Fourier transforms. Lecture 3 hours per week.

E262 (ETR 261) Microprocessor Application I
90 Hours 4 Credits
Teaches the fundamentals of microprocessors including architecture, internal operations, memory, I/O devices machine level programming and interfacing. Emphasizes instrumentation and microprocessor. Part I of II. Lecture 3 hours + lab 3 hours, total 6 hours per week. Prerequisite: ETR 279.

E270 (EGR 270) Fundamentals of Computer Engineering
75 Hours 4 Credits
Covers the design and organization of digital systems, including number systems, Boolean algebra, logic gates, Karnaugh maps, combinational and sequential logic circuits, timing diagrams, and synchronous and asynchronous controllers. Introduces hardware description language (HDL) and assembly language programming. Lecture 3 hours + lab 2 hours, total 5 hours per week. Prerequisite: EGR 260 and EGR 125.

E271 (EGR 271) Circuit Theory I
45 Hours 3 Credits
Teaches basic electrical concepts and laws, the formulation of network equations for resistive networks based on the use of graph theory and linear algebra, network theorems, and network reduction techniques. Prerequisite: EGR 110. Co-requisite: MTH 279. Lecture 3 hours per week.

E272 (EGR 272) Circuit Theory II
45 Hours 3 Credits
Introduces expansion of network equation formulation to include inductive and capacitive networks; network analysis using the differential equations, Laplace transforms, and phasor; transfer functions; frequency response; and mutual inductance. Prerequisites: EGR 271 and MTH 279. Lecture 3 hours per week.

E279 (ETR 279) Digital Principles, Terminology and Applications
90 Hours 4 Credits
Studies digital principles, terminology and applications covering number systems, arithmetic, Boolean algebra, Karnaugh maps and advanced logic circuits. Includes the study and registers, encoding and decoding, and multiplexing; A/D, D/A, displays and others. Lecture 3 hours + lab 3 hours, total 6 hours per week.

E302 (ECE 302) Linear Systems Analysis
45 Hours 3 Credits

E303 (ECE 303) Introduction to Electrical Power
45 Hours 3 Credits
Basic concepts of AC systems, sinusoidal steady state response, phasor analysis, AC steady state power, single-phase and three-phase networks, electrical power generation, transformers, transmission lines, electric machinery and the use of power. Energy resources, power plants, renewable energy, electric safety.
E304 (ECE 304) Probability, Statistics, and Reliability
45 Hours 3 Credits
Introduction to probability, probability models, discrete and continuous random variables, statistics, reliability and stochastic processes. Examples discussed will focus on computer and electrical engineering applications that include both component- and system-level aspects. MATLAB and/or EXCEL are introduced as tools for data analysis, computation and simulation.

E313 (ECE 313) Electronic Circuits
90 Hours 4 Credits
Introduction to junction diodes, bipolar junction transistors (BJTs), MOS field-effect transistors (MOSFETs) and operational amplifiers (op-amps). Design concepts for discrete analog circuits with diodes, BJTs, MOSFETs and op-amps. The lab component introduces design and techniques for implementation of analog circuits.

E323 (ECE 323) Electromagnetics
45 Hours 3 Credits
An introduction to electromagnetic waves, wave propagation in various media; propagation across interfaces; propagation in waveguides and transmission lines. Antennas and radiation from antennas.

E332 (ECE 332) Microelectronic Materials and Processes
45 Hours 3 Credits
An introduction to fundamental properties of semiconductors and device fabrication processes. The topics include crystal structure, bonding, energy bands, doping, carrier densities, mobility, resistivity, recombination, drift, and diffusion. Basic structure and operations of p-n junctions, BJTs and MOSFETs and their fabrication processes, including solid state diffusion, thermal oxidation of silicon, ion implantation, chemical vapor deposition, thin film deposition, photolithography and etching.

E381 (ECE 381) Introduction to Discrete-time Signal Processing
45 Hours 3 Credits
This course covers fundamental digital signal processing techniques that form the basis for a wide variety of application areas. Topics include discrete-time signals and systems, time domain analysis, solutions of difference equations, Z-transform analysis; discrete Fourier transforms (DFT), sampling theorem, transform analysis of linear time-invariant systems, structure of discrete-time systems and introduction to power spectrum estimation.

E387 (ECE 387) Microelectronics Fabrication Laboratory
60 Hours 3 Credits
The laboratory course will enable students to fabricate MOSFETs, MOS capacitors, diffused resistors and p-n diodes. Students will be trained to operate the equipment required for wet and dry oxidation, thin film deposition, solid state diffusion, photolithography, and etching. Students will fabricate and analyze the devices by current-voltage characteristic, capacitance-voltage characteristic, film thickness and conductivity measurements.

E401 (ENGN 401) Fundamentals of Engineering
1 Credit
This course prepares the engineering and engineering technology students for the Fundamentals of Engineering Examination.

E401 (ENMA 401) Project Management
45 Hours 3 Credits
Foundations, principles, methods, and tools for effective design and management of projects in technology-based organizations. Project organization, life cycle, planning, scheduling, implementation, control, and evaluation. Special emphasis on project leadership, problem solving in team-based projects, project failure analysis, and advanced methods. Use of case studies and applications to reinforce course concepts. Students design and plan a project from concept through completion including proposal and post-project analysis.

E480 (ENMA 480) Ethics and Philosophy in Engineering Applications
45 Hours 3 Credits
This course is designed to expose prospective engineering managers the theories and practices that are inherent in the ethical environment of modern organizations. Topics include definitions of ethical behavior and leadership, the history of ethical thought, moral decision-making, and the importance of values such as honesty, integrity, and trustworthiness. A full exploration of ethical autonomy, collaboration, communication and moral imagination will be conducted. A variety of methods will be used to facilitate learning, including a textbook, movie and videos, case studies, experiential activities and writing assignments.
E485 (ECE485) Electrical Engineering Design I
60 Hours 3 Credits
Lectures focus on providing professional orientation and exploration of the design process. Small group design projects focus on the development of electronic subsystems. Oral and written communication skills are stressed.

E486 (ECE 486) Preparatory ECE Senior Design II
1 Credit
The course will focus on developing a proposal for a group design project. The senior design projects aim at developing engineering design skills of a complete computer/electrical system. Elements of developing a successful proposal are emphasized along with written communication skills.

E487 (ECE 487) ECE Senior Design II
60 Hours 2 Credits
The senior design projects aim at developing engineering design skills of a complete computer/electrical system. Oral and written communication skills are emphasized.

H121 (HIS 121) United States History I
45 Hours 3 Credits
(3 credits) Prerequisite(s): ENF 1 or ENF 2 as demonstrated through the placement and diagnostics tests or equivalent. Surveys United States history from its beginning to the present. Lecture 3 hours per week.

H122 (HIS 122) United States History II
45 Hours 3 Credits
(3 credits) Prerequisite(s): ENF 1 or ENF 2 as demonstrated through the placement and diagnostics tests or equivalent. Surveys United States history from its beginning to the present. Lecture 3 hours per week.

H210 (HLT 210) Stress Management
30 Hours 2 Credits
Provides a basic understanding of stress and its physical, psychological, and social effects. Includes self-evaluation, sources of stress, and coping skills. Lecture 2 hours per week.

I119 (ITE 119) Information Literacy
45 Hours 3 Credits
Presents the information literacy core competencies focusing on the use of the information technology skills. Skills and knowledge will be developed in database searching, computer applications, information security and privacy, and intellectual property issues. Lecture 3 hours per week. Prerequisite(s): ENF 1 or ENF 2 as demonstrated through the placement and diagnostics tests or equivalent.

L299 The William and Mary Leadership Experience
63 Hours 2 Credits
Provides an opportunity for select Advanced Shipyard Operations Curriculum students to examine revolutionary concepts in leadership. It challenges the student with case studies, historical examples of leadership, teambuilding activities, and time to reflect on the students’ own goals as a future leader.

M113 (MEC 113) Materials and Processes of Industry
60 Hours 3 Credits
Studies industrial engineering materials and accompanying industrial processes. Investigates nature of materials structure and properties from a design standpoint, leading to a more intelligent selection of a material to fit the requirements of a part or product. Analyzes the effects of the various processes on materials, as well as the processes themselves, to ensure a logical and systematic procedure for selection of materials. Lecture 4 hours per week.

M131 (MEC 131) Mechanics I Statics
45 Hours 3 Credits
Teaches Newton’s laws, resultants and equilibrium of force systems, trusses and frames, determination of centroids, and distributed loads and moments of inertia. Introduces dry friction and force systems in space. Lecture 3 hours per week.

M132 (MEC 132) Mechanics II Strength of Materials for Engineering Technology
45 Hours 3 Credits
Teaches the concepts of stress and strain. Provides an analysis of stresses and deformations in loaded members, connectors, shafts, beams, columns, and combined stress. Lecture 3 hours per week.
M133 (MEC 133) Dynamics for Engineering Technology
30 Hours 2 Credits
Focuses on rigid body mechanics including Kinetics, Kinematics, and applications to machine elements.

M155 (MEC 155) Mechanisms
30 Hours 3 Credits
Studies the purpose and actions of cams, gear trains, levers, and other mechanical devices used to transmit control. Focuses on motions, linkages, velocities, and acceleration of points within a link mechanism; layout method for designing cams and gear grain. Requires preparation of weekly laboratory reports.

M165 (MEC 165) Applied Hydraulics, Pneumatics and Hydrostatics
45 Hours 3 Credits
Teaches fluid power system design, operation, testing, maintenance and repair. Includes reservoirs, pump connecting valves, cylinders, pressure regulating valves, flow control valves, hydraulic motors, and introduction to basic hydrostatic hydraulic systems. Lecture 2 hours per week.

M161 (MTH 161) Precalculus I
45 Hours 3 Credits
Presents topics in power, polynomial, rational, exponential, and logarithmic functions, and systems of equations and inequalities. Lecture 3 hours per week.

M162 (MTH 162) Precalculus II
45 Hours 3 Credits
Presents trigonometry, trigonometric applications including Law of Sines and Cosines and an introduction to conics. Lecture 3 hours per week.

M264 (MTH 264) Calculus II
60 Hours 4 Credits
Continues the study of calculus of algebraic and transcendental functions including rectangular, polar, and parametric graphing, indefinite and definite integrals, methods of integration, and power series along with applications. Features instruction for mathematical, physical and engineering science programs.

M201 (MAE 201) Materials Science
45 Hours 3 Credits
Principles of materials science with emphasis on the relationship between structure and properties and their control through composition and processing. Metals, polymers, ceramics, and composite materials are considered.

M203 (MAE 203) Mechanical Engineering Lab I – Materials Science
1 Credit
This laboratory involves experiments demonstrating lecture material covered in the MAE 201 course.

M261 (MTH 261) Applied Calculus I
45 Hours 3 Credits
Introduces limits, continuity, differentiation and integration of algebraic, exponential and logarithmic functions, and techniques of integration with an emphasis on applications in business, social sciences and life sciences. Lecture 3 hours per week.

M263 (MTH 263) Calculus I
60 Hours 4 Credits
Presents concepts of limits, derivatives, differentiation of various types of functions and use of differentiation rules, application of differentiation, antiderivatives, integrals and applications of integration. Lecture 4 hours per week.

M264 (MTH 264) Calculus II
60 Hours 4 Credits
Continues the study of calculus of algebraic and transcendental functions including rectangular, polar, and parametric graphing, indefinite and definite integrals, methods of integration, and power series along with applications. Features instruction for mathematical, physical and engineering science programs.
M265 (MTH 265) Calculus III
60 Hours 4 Credits
Focuses on extending the concepts of function, limit, continuity, derivative, integral and vector from the plane to the three dimensional space. Covers topics including vector functions, multivariate functions, partial derivatives, multiple integrals and an introduction to vector calculus. Features instruction for mathematical, physical and engineering science programs.

M279 (MTH 279) Differential Equations
45 Hours 3 Credits
Introduces ordinary differential equations. Includes first order differential equations, second and higher order ordinary differential equations with applications and numerical methods.

M283 (MTH 283) Probability and Statistics
60 Hours 3 Credits
Presents basic concepts of probability, discrete and continuous random variables, and probability distributions. Presents sampling distributions and the Central Limit Theorem, properties of point estimates and methods of estimation, confidence intervals, hypothesis testing, linear models and estimation by least squares, and analysis of variance. Lecture 3 hours per week.

M283 (MTH 283) Probability and Statistics
60 Hours 3 Credits

M303 (MAE 303) Mechanics of Fluids
45 Hours 3 Credits
Fundamental concepts, fluid statics, basic equations in integral form, open-channel flow, Bernoulli’s equation, dimensional analysis and similitude, incompressible viscous flow, pipe friction, boundary layers, introduction to differential analysis.

M305 (MAE 305) Mechanical Engineering Laboratory III – Thermo/Fluids
1 Credit
An introduction to thermo-fluid experimentation and measurement; basic flow phenomena demonstrated; measurement techniques for flow temperature, pressure and properties; report writing and data reduction methods, including statistical treatment of data; formal oral reports.

M311 (MAE 311) Thermodynamics I
1 Credit
Essential definitions of thermodynamics, first law, physical properties, ideal and real gases, second law, reversibility, irreversibility and consequences thermodynamic cycles.

M312 (MAE 312) Thermodynamics II
45 Hours 3 Credits
Concepts and principles dealing with thermodynamic cycles, relations and generalized charts, mixtures of fluids, chemical reactions, chemical and phase equilibrium, thermodynamic aspects of fluid flow; introduction to compressible flow, isentropic and normal shock wave relations.

M315 (MAE 315) Heat and Mass Transfer
45 Hours 3 credits
Fundamental laws of heat transfer by conduction, convection, and radiation; boundary-layer concepts; simultaneous heat, mass and momentum transfer.

M320 (MSIM 320) Continuous Simulation
45 Hours 3 Credits
An introduction to the fundamentals of modeling and simulating continuous-state, time-driven systems. Topics include differential equation representation of systems, formulation of state variable equations, and numerical integration techniques including Taylor series, families of Runge-Kutta and Adams methods. Application domains considered include physical, biological, electrical systems, and real-time simulations.

M325 (MGMT 325) Contemporary Organizations and Management
45 Hours 3 Credits
The fundamentals of the managerial process (planning, organizing, leading and controlling) are considered in the context of 21st century organizations. Topics are almost evenly split between macro and micro perspectives.

M331 (MSIM 331) Simulation Software Design
45 Hours 3 Credits
Introduction to data structures, algorithms, programming methodologies, and software architectures in support of computer simulation. Topics include lists, queues, sets, trees, searching, sorting, reusable code, and order of complexity. Simulation structures developed include event lists, time management, and queuing models. Software models are implemented and tested.
M332 (MAE 332) Mechanical Engineering Design I
45 Hours 3 Credits
Introduction to machine design including review of stress and deflection analysis. Statistical considerations in design, strength of mechanical elements with emphasis on theories of failure and fatigue design, design of mechanical elements such as screws, fasteners, connections, welded joints, and flexible mechanical elements.

M340 (MAE 340) Computational Methods in Mechanical Engineering
45 Hours 3 Credits
A survey of modern computing techniques for mechanical engineers. Numerical algorithms are presented to solve practical problems in mechanical engineering as found in solid mechanics, fluid mechanics, dynamics and heat transfer. Emphasis is on providing computational experience in applied numerical methods using computers. Topics include roots of equations, simultaneous equations, differential, integration, regression analysis, interpolation and differential equations.

45 Hours 3 Credits
A study of the functional duties associated with personnel/human resource administration. Topics include human resource planning, selection, performance appraisal, training, discipline, wage and salary, occupational safety and health, equal employment opportunity, and labor relations.

M382 (MSIM 382) Continuous Simulation Lab
1 Credits
A laboratory course designed to provide a hands-on introduction to the development and application of continuous simulation. Topics include an introduction to one or more continuous simulation tools, modeling of various physics-based systems, and numerical solution of differential equations. The design and implementation of a series of increasingly complex simulations of various continuous systems are conducted. The laboratory is designed to accompany MSIM 320. Student written reports are required.

M383 (MSIM 383) Simulation Software Design Lab
1 Credits
A laboratory course designed to provide a hands-on introduction to the development and application of continuous simulation. Topics include an introduction to one or more continuous simulation tools, modeling of various physics-based systems, and numerical solution of differential equations. The design and implementation of a series of increasingly complex simulations of various continuous systems are conducted. The laboratory is designed to accompany MSIM 320. Student written reports are required.

M404 (MAE 404) Vibrations
45 Hours 3 Credits
Free and forced vibrations of undamped and damped, single-degree of freedom, multi-degree of freedom, and continuous systems. Exact and approximate methods to find natural frequencies. Prerequisites: A grade of C or better in MAE 205, a grade of C or better in MAE 220; MAE 340 and MATH 312.

M433 (MAE 433) Mechanical Engineering Design II
45 Hours 3 Credits
Kinematics analysis, force analysis and design of spur, helical, worm, and bevel gears. Antifriction bearings, lubrication and journal bearings, shaft design, mechanical spring design, design of clutches, brakes and couplings.

M434 (MAE 434) Project Design and Management I
45 Hours 3 Credits
Lecture topics include engineering economics; project planning; costing and risk analysis; and product realization techniques. Course involves written and oral presentations for students to improve communication and teamwork.

M435 (MAE 435) Project Design and Management II
45 Hours 3 Credits
Conceptual design ideas are expanded into detailed design ideas. Product realization is applied to complete hardware. Course covers Gantt charts, preliminary design, evaluation and trading matrices, detailed design and analysis, oral and technical reporting including cost analysis. Ethics and patent issues are also included.

M436 (MAE 436) Dynamic Systems and Control
45 Hours 3 Credits
Analysis and synthesis of feedback systems; functional description of dynamic systems; basic controllers; sensitivity, stability and error analysis; transient and steady state response using computational techniques, root locus and frequency response methods; state space analysis of control systems.
M441 (MSIM 441) Computer Graphics and Visualization
45 Hours 3 Credits
The course provides a practical treatment of computer graphics and visualization with emphasis on modeling and simulation applications. It covers computer graphics fundamentals, visualization principles, and software architecture for visualization in modeling and simulation.

M487 (MSIM 487W) Capstone Design I
60 Hours 4 Credits
Part one of the senior capstone design experience for modeling and simulation engineering majors. Lectures focus on providing professional orientation and exploration of the M&S design process. Written communication, oral communication and information literacy skills are stressed. Individual and group design projects focus on the conduct of a complete M&S project. Industry-sponsored projects are an option. Individual and team reports and oral presentations are required. This is a writing intensive course.

M488 (MSIM 488) Capstone Design II
45 Hours 3 Credits
Part two of the senior capstone design experience for modeling and simulation engineering majors. Lectures focus on providing professional orientation and exploration of the M&S design process. Written communication, oral communication and information literacy skills are stressed. Individual and group design projects focus on the conduct of a complete M&S project. Industry-sponsored projects are an option. Individual and team reports and oral presentations are required.

P202 (PHY 202) General College Physics II
90 Hours 4 Credits
Teaches fundamental principles of physics. Covers mechanics, thermodynamics, wave phenomena, electricity and magnetism, and selected topics in modern physics. Lecture 3 hours + 3 lab hours, total 6 hours per week.

P220 (PHI 220) Ethics
45 Hours, 3 Credits
Provides a systematic study of representative ethical systems. Lecture

P241 (PHY 241) University Physics I
60 hours 4 credit
Teaches principles of classical and modern physics. Includes mechanics, wave phenomena, heat, electricity, magnetism, relativity, and nuclear physics. Lecture 3 hours + 3 lab hours, total 6 hours per week. Prerequisite: M173 or M273.

P242 (PHY 242) University Physics II
60 hours 4 credits
Teaches principles of classical and modern physics. Includes mechanics, wave phenomena, heat, electricity, magnetism, relativity, and nuclear physics. Lecture 3 hours + 3 lab hours, total 6 hours per week. Prerequisite: M174.

S100 (SDV 100) College Success Skills
8 Hours 1 Credit
Assists apprentices toward college success through information regarding effective study habits, career and academic planning, and other Thomas Nelson Community College resources. Includes English placement testing. Required for associate degree programs. Lecture 1 hour per week.

S330 (STAT 330) An Introduction to Probability and Statistics
45 Hours 3 Credits
Topics include: descriptive statistics, probability theory and probability distributions, mathematical expectation and its role in decision making, hypothesis testing, point and interval estimation, numerous applications. (Not open to students with credit in STAT 331.) Prerequisites: A grade of C or better in MATH 211.

NOTE: Laboratory physics for Physics 201. Completion of this laboratory physic course plus successful completion of (WCSC) P221 and P222 with grades of C or better transfer to Thomas Nelson Community College as equivalent to PHY 201 General College Physics I.